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The electrons bound to the surface of liquid dielectrics by image forces are 
described as a two-dimensional, classical, one-component plasma with 
inverse distance interactions. Exact expressions for the collective modes and 
the dynamic structure factor are obtained from first principles in the limit 
of long wavelengths. The differences and analogies with uncharged particle 
fluids and with the three-dimensional one-component plasma are explicitly 
displayed. The previously used mean-field approximation is shown not to 
describe weakly coupled systems and to be inadequate in the long-wavelength 
region. 
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1. INTRODUCTION 

The study of  the static and dynamic properties o f  Cou lomb systems has 
recently become a very active field. 3 Detailed computer  experiments on the 
simplest Coulomb system, the one-component  plasma (OCP), have been 
performed by Hansen et al. C1"2~ A number  o f  computer  experiments on two- 
componen t  plasmas, molten salts, and ionic mixtures are underway,  (1,3) while 
the number  o f  theoretical studies is also currently increasing. <1,~,5) 

Recently, an interesting novel type o f  Coulomb system has emerged. 
I t  is obtained experimentally by fixing extra electrons on the exterior o f  
dielectric surfaces by means o f  image-binding. <6,7~ These electrons can move 
freely along the surface but  find their mot ion  perpendicular to the surface 
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extremely restricted. In most experimental situations these electrons behave 
classically. The conditions of density and temperature can be varied rather 
easily so as to cover the whole fluid phase, ranging from weak to strong 
coupling situations. As done by previous authors, (8~ we will describe this 
(charge-compensated) electron surface layer as a classical, two-dimensional, 
one-component plasma (OCP). The interaction energy between two electrons 
of  the layer a distance r apart will be written V(r)  = e2/r, with the understand- 
ing that here e denotes an effective charge related to the electronic charge, say 
Co, by e = eo/E 1/2, where E is the arithmetic mean of the dielectric constants of  
the adjacent dielectrics [e = (E~ + e2)/2]. The fact that here the interaction 
potential V(r)  is the three-dimensional (~  l / r )  and not the two-dimensional 
(~ ln  r) Coulomb potential finds its origin in the surface layer being only 
approximately two-dimensional. In this treatment, we will neglect the 
presence of impurity atoms from the surface, which are known to play an 
important role in the laboratory experiments. (9~ The present model is never- 
theless directly accessible to computer experiments. (1~ 

In Section 2, we recall the basic ingredients of the microscopic theory of 
Coulomb systems, which was developed elsewhere, (5~ and adapt them to the 
present case. The long-wavelength limit of the collective modes and the 
dynamic structure factor are obtained in Section 3. The results for the electron 
surface layer are compared there with the earlier results (5~ for the three- 
dimensional OCP and with the Landau-Placzek result for uncharged fluids. 
In Section 4, we compare our results with the mean-field results obtained by 
various authors (8~ and conclude that the mean-field approximation is in- 
adequate for describing the long-wavelength behavior of the electron surface 
layer, even if the latter is weakly coupled. ~ Finally, our conclusions are 
summarized in Section 5. 

2. M I C R O S C O P I C  THEORY OF C O U L O M B  SYSTEMS 

The charge-compensated electron surface layer will be described here as 
a classical, 2D (two-dimensional) OCP (one-component plasma). We will 
start from the microscopic theory developed elsewhere (Sa~ for the 3D OCP. 
This theory can be easily adapted to the present case. The interest of starting 
with a theory that does not rely on any assumption concerning the strength of 
the system's coupling is twofold. First, most of the experimental systems are 
known to be fairly strongly coupled38-1~ More important, however, is the 
fact that we expect difficulties to show up in the limit of  vanishing coupling 
and in the mean-field approximation. Indeed, as was shown by Totsuji, (8~ 

A short report was presented at the recent IUPAP conference on Statistical Physics 
(Haifa, August 1977) and will be published in the proceedings of this conference. 
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the Debye-Hiickel theory, which is the static version of Vlassov's mean-field 
theory, does not yield correctly the static equilibrium correlations of a weakly 
coupled 2D OCP, whereas it does in the 3D case. As the enhancement of the 
collisional effects noticed by Totsuji for the 2D statics is likely to show up 
also in the dynamics, we feel that it is important to be able to analyze the 
mean-field approximation starting from a more general setting. 

We summarize now the main steps of the microscopic approach, refer- 
ring to the literature C~) for the details. We start from the microscopic phase- 
space densityf(rpt) of the N particles: 

N 
f(rpt)  = ~. 3(r - xj(t)) 3(p - pj(t)) (1) 

1=1 

where xj(t) and pi(t) denote, respectively, the position and momentum of 
particlej at time t. Next, we consider the space-time correlation function S of 
the equilibrium fluctuations 3f = f - ( f )  o f f :  

S(r - r', t - t ' ;  pp') = (3f(rpt) 3f(r'p't ')) (2) 

where, as usual, (A) denotes the canonical equilibrium average of A over the 
initial phase {xj(0), p~(0)}. From the Liouville equation obeyed by f(rpt)  an 
exact kinetic equation for S is then derived. ~ This equation reads in Fourier- 
Laplace transform 

f dp" Z(kz; pp")S(kz; p"p') = i S ( k ,  t = 0; pp') (3) z S ( k z ;  pp') 

where I3 is the so-called memory function. The kinetic equation (3) is then 
finally transformed into an algebraic set of transport equations: 

5 
[z 3 j i -  ~(kz)]Gi~-,(kz) = i G j s , ( k ,  t = 0) (4) 

i=1 

for the hydrodynamic space-time correlation functions Gsj: 

G~j(kz) = ( dp dp' ~ S(kz; pp') 
/~/](pr) 

(5) 
$ u s gly 

where the us(p) (i = 1-5) correspond to the density (i = n), the longitudinal 
( i  = l ) ,  and transverse (i = tl, t2) momentum and the excess kinetic energy 
(i = e) states, and the as are normalization constants. The transport matrix 
f2~j appearing in Eq. (4) can be further related to the memory function Z of 
Eq. (3) [see, for instance, Eq. (44)]. Using the system's invariance and 

5 We follow here very closely a theory first developed by Forster and Martin (15> for 
uncharged particle fluids. 
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conservation laws, we arrive at the following form for the matrix elements f2,j 
of  interest to us: 

f~.~(kz) = kvo 
Ozn(kz) = kvo[1 -- c(k)]; f~u(kz) = - ik2Dz(kz); 

(6a) 

f2,,(kz) = kDz,(kz) 

(6b) 

(6c) [2~z(kz) = kDcz(kz); f~ (kz )  --- -ik2D~(kz) + zB~(z) 

These are in fact the only nonvanishing matrix elements ~ j  for (i, j )  = 
(n, l, E). The k and z factors appearing in Eq. (6) have been pulled out from 
~ j  by using the microscopic conservation laws, while the/-factors have been 
introduced for later convenience. In Eqs. (6) we have also introduced the 
thermal velocity Vo [Vo 2 = (m/3)- 1, m being the mass of the particles and fi the 
inverse temperature in energy units] and the (dimensionless) direct correlation 
function c(k), which is related to the static structure factor S ( k )  by 

S ( k )  = [1 - c(k)] -1 (7) 

With these ingredients, the density-density correlation function Gnu, which is 
obtained from Eq. (5) with u,(p) = 1 and a,  2 equal to the number density n, 
i.e., 

(1/n) f dp dp' S(kz; pp') (8) G,,(kz) 

can now be further resolved exactly in terms of the transport matrix elements 
of Eqs. (6) as 

[z + ik2Dz(kz)] [z + ikZa~(kz)] - k2~,~(kz) 
G,~(kz) = i S ( k )  [z 2 _ w2(k ) + zik2Dz(kz) ] [z + ik2~,(kz)] - zk2~z,(kz) 

(9) 

where S ( k )  = G,~,~(k, t --- 0), while the following abbreviations have been 
introduced: 

~o2(k) = (kv0)2[1 - c(k)]; c~,(kz) = D,(kz)/[1 - B,(z)]; 

7~,(kz) = n~r - B,(z)] (10) 

In the following we will be concerned with the behavior of Gnn(kz), as given 
by Eq. (9), but only for small k values. In order to perform such an analysis 
we need to know the small-k behavior of c(k) and the amount of analyticity 
satisfied by D~(kz), c~,(kz), and 7'~,(kz). Leaving the discussion of the dynamical 
quantities such as D,(kz)  for next section, we close this summary of the 
microscopic approach with a discussion of the small-k statics. 
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We will assume that, if V(r) is the interaction potential, we can write in 
position space 

c ( r ) = - n [ 3 V ( r )  for r - + ~  (11) 

This relation states that distant particles can only be weakly coupled. Indeed, 
the rhs of Eq. (11) is also the weak-coupling limiting value of c(r). In three 
dimensions, Eq. (11) is very well satisfied by the computer experiments (11) on 
the OCP. A formal proof of Eq. (11) for a general fluid appears to be under- 
way. c12) We also notice that relation (11) is very sensitive to the nature of the 
interaction potential. For instance, for the 3D OCP with V(r) = eo2/r we have 
in wave-vector space 

c(k) = - k 3 ~ / k  2 for k ~ 0 (12) 

where k3 is the 3D Debye wave vector (k3 2 --- 4rreo~n/3). The singular nature of 
c(k) for the OCP, as displayed in Eq. (12), was shown elsewhere (Sa~ to explain 
the profound differences between the small-k behavior of the OCP and of 
ordinary fluids. For the 2D OCP with V(r) = e2/r, where e is the effective 
charge, we obtain instead of Eq. (12) 

c(k) = - k ~ / k  for k -+ 0 (13) 

where k2 = 2~re2n2/3 is the 2D analog of the Debye wave vector, n2 being the 
average number of particles per unit area. From Eq. (13) we see that in two- 
dimensions c(k) is still singular for small k, but this singularity, which is 
characteristic of Coulomb systems, has been weakened. As will be seen below, 
it is this weakening of the Coulomb singularity that is responsible for the 
fact that in two dimensions the plasma mode is a low-frequency mode whereas 
the Debye screening is algebraic rather than exponential. (8~ We find it illumi- 
nating to be able to follow explicitly the modifications brought about by the 
change of dimensionality d between d = 2 and d = 3. We therefore introduce 
a dimensionality index d so that all the relevant information about c(k) can 
be summarized in the following expression: 

c(k) = - (ka/k) a-1 + e(k) (14) 

The d-D OCP (d = 2, 3) with 1/r interactions can then be characterized by 
the coupling constant Aa = (ka)a]na measuring the inverse of the number of 
particles in a d-D cube constructed with the Debye length kg 1 as unit length. 
Here and in Eq. (14), ka denotes the Debye wave vector, ka = 
(2 a- ~rrea2na/3)lla-1, of a system of temperature/3-1, of particles of charge ea 
(e2 = e, ea = eo), and of average number of particles per unit d-D volume 
given by ha. In Eq. (14), O(k) represents a remainder, which is assumed regular 
as k -+ 0 and which can incorporate any short-range interactions eventually 
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present together with the Coulomb interactions. It is convenient to define the 
isothermal compressibility Xr through the relation 

e ( k  = O) = 1 - Xr~ (15) 

where Xr ~ = fl/na is the perfect-gas value ofxT. With these definitions, Eq. (14) 
reduces to the Debye-Hiickel approximation for a pure Coulomb case if we 
put ~(k) = 0, whereas it reduces to the neutral fluid result if we put ea, and 
hence also ka,  equal to zero. Substitution of Eqs. (14)-(15) into Eq. (7) leads 
then immediately to 

S ( k )  = (k /ka)  a - t  for k - + 0  (16) 

for the OCP (ca ~ 0), whereas for a neutral fluid (ea = 0) we recover the 
compressibility sum-rule 

S ( k  = O) = XT/XT ~ (17) 

This is as far as we need to go for the static properties. 

3. THE COLLECTIVE M O D E S  A N D  
D Y N A M I C  S T R U C T U R E  FACTOR 

From Eq. (9) we see that the collective modes building up G~(kz) are 
given by the solutions of the following dispersion equation: 

[z 2 - o~2(k) + zik2Dz(kz)]  [z + ik2a,(kz)]  = zk27z~(kz) (18) 

This equation has the typical structure of a coupled mode spectrum where the 
density modes, corresponding to the zeros of z 2 - oJ 2 + zik2D~, are coupled 
to the energy modes, z + ik2~, = 0, by the rhs of Eq. (18), i.e., by 7~,. 

In what follows we will only be interested in the solutions z = z ( k )  of 
Eq. (18) for small k values. In this microscopic region (k---> 0) we expect 
weak ly  damped  modes to show up, which for large enough times t will 
dominate the Van Hove function G,,(k, t), i.e., the time-image of G,,(kz). 
The small-k, large-t behavior of G,,(k, t) will be analyzed below. First, we 
will concentrate on the collective modes given by the small-k solutions of 
Eq. (18). The small-k behavior of co(k) appearing in Eq. (18) follows im- 
mediately from Eqs. (10), (14)-(15): 

oJZ(k) = (kvo)2[(ka/k) a-1 + Xr0/Xr] for k --~ 0 (19) 

For uncharged particles (ca = 0 = ka) Eq. (19) yields the isothermal sound 
wave frequency, co2(k) = (kc )  2, with c2/vo ~ = Xr~ whereas for the d-D 
OCP we get wZ(k) = ~oa2(k/ka) 3-a, with wa = voka, i.e., a high-frequency 
plasma mode in three dimensions and a low-frequency plasma mode in two 
dimensions. In order to obtain the small-k solutions of Eq. (18) we also need 
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some information about the behavior of Dz(kz), a,(kz), and 7z,(kz). In three 
dimensions D,(00) and a,(00) can be related to the transport coefficients (Sa~ 
(respectively, the longitudinal viscosity and the thermal conductivity), whereas 
7,,(00) is a thermodynamic coefficient given by 

7,~(00) = c~(c~lcv - 1) (20) 

where cp/cv is the specific heat ratio. In two dimensions, the situation is not so 
favorable, as Dz(0, z) and c~,(0, z) presumably c13,14) exhibit a weak logarithmic 
singularity for small z. As our intention here is not to tackle this difficult 
problem, we will content ourselves with the following assumptions, com- 
patible with our present knowledge of 2D transport. We will assume that the 
transport quantities Dz and c~, are such that kD~(O, z (k))  and k~,(0, z (k )  
vanish as k ~ 0 for z(k)  at most of order k ~/2, whereas 7z,(kz), not being a 
transport quantity, will be assumed to exist at k = 0, z = 0. Then one can 
formally prove that 7,,(00) is still given by Eq. (20) with c~ interpreted as the 
specific heat at constant d-D volume. With these assumptions the dispersion 
equation (18) can be shown to possess small-k solutions corresponding to 
weakly  damped  modes, which will now be displayed. 

3.1. The D i f fus ive  M o d e  

Dividing Eq. (18) by the first factor in its lhs and rearranging terms, we 
obtain the dispersion equation in the form 

k27~,(kz) ] -1 (21) 
z = - i k 2 ~ , ( k z )  1 - z2 _ ~o2(k) + z ik2D,(kz)  ] 

which we solve for z = z(k) .  Using the assumptions stated above, we can 
reduce Eq. (21) to 

[ k2~,,(k, ~_(k))] -1 (22) z(k)  = - ik2~,(k, z(k))  [1 + o) 2(k) J 

which takes the form of a diffusive mode, zr (k)  = - ik2Dr(k) ,  with a thermal 
diffusitivity Dr(k)  given to dominant order in k by 

D r ( k )  = ~,(0, z~(k)) 1 + ~ - 1 - -  S ( k )  (23) 
Xr 

where we have used Eq. (20) and (o2(k) -= (kvo)2/S(k)  [see Eqs. (7), (10)]. For 
a neutral fluid we obtain from Eqs. (7) and (23) 

Dr(k )  = ,~,(0, - i k2Dr(k ) ) cv / ep  for ea = 0 (24) 

whereas for the d-D OCP Eqs. (16) and (23) lead to 

Dr(k) = a,(0, - i k 2 D r ( k ) )  for ea ~a 0 (25) 
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As stated above, we will not further elaborate on the weak z dependence of 
a,(0, z) still retained in Eqs. (24), (25). Let us only recall that in the 3D case 
c~,(0, 0) can be related to the thermal conductivity K by (~,(0, 0) = K/nmc~,. 
This then brings us to our main point here, that both the charged (ea # 0) and 
uncharged (ea = 0) fluid exhibit a thermal diffusion mode, but with different 
thermal diffusitivities, as seen from the absence of the c~,/cp factor of Eq. (24) 
from Eq. (25). In the presence of Coulomb interactions the coupling of the 
energy and density fluctuations has thus been weakened both in two and 
three dimensions. This effect, which was known previously (~a) for the 3D 
OCP, has been shown here to persist also for the electron surface layer 
because the static structure factor S ( k )  as it appears in Eq. (23) is vanishingly 
small for small k in both cases. This Coulomb effect is only weakly dependent 
on the dimensionality [S(k) = O ( k  '~- 1)]. 

3.2. The Propagat ing Modes  

The situation is quite different for the remaining density modes, which 
we obtain by rewriting the dispersion equation (18) in the form 

z 2 = oJ2(k) - z ik2Dz(kz)  + zk2y~,(kz)/[z  + ik2~,(kz)] (26) 

and solving once more for z = z(k) .  The small-k solution of Eq. (26) is now 
seen to be controlled by co(k), which, according to Eq. (19), is of order k for a 
neutral fluid, of order k ~ for the 3D OCP, and of order k 1/2 for the 2D OCP. 
In all cases we obtain from Eq. (26) two oppositely propagating modes, 
z . ( k )  = + ~ ( k )  - �89 + u (k ) ) ,  with ~(k) defined by 

~ ( k )  = ~o~(k) + k~,,,(0, 0) (27) 

and with F( + u) given by 

k~y,,(0, 0)a,(0, _+_ u(k)) + D,(0, + u(k)) r(_+ ~(k)) - ~2(k ) 

+ y,,(0, + ~(k)) - ~,~,(0, 0) (28) 
i~(k) 

Let us consider now the different cases more explicitly. First, for the neutral 
case (ea = 0), we obtain from Eqs. (27) and (19)-(20) 

~2(k) = (k5)2; 52 = c2cp/c,, for ea = 0 (29) 

showing that the coupling of the energy and density fluctuations described by 
y~, has shifted the sound speed from its isothermal (c) to its isentropic (~) 
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value according to Eq. (27). The damping of these sound modes is then further 
described by Eq. (28), leading to 

F(+~)  = ( 1 -  c~)a~(O, +~(k)) + D~(O, +~(k)) 

idY~(-~O'z) I ; e d = 0  (30) + 
Z=0 

where in three dimensions, a,(0, 0) and Dz(0, 0 ) +  i d~,(0, O)/dz can be 
further identified as, respectively, the damping due to the thermal conductivity 
(K/nmcv) and to the viscosity [(3~ 7 + ~)/nm] of the fluid. Second, for the 3D 
OCP, Eqs. (27) and (19) show that ~(k = 0) = o~(k = 0) is finite and equal 
to o~3, the standard plasma frequency. Hence the thermal conductivity con- 
tribution to F, i.e., the first term in the rhs of Eq. (28), drops out for small k, 
whereas the last term in the rhs of Eq. (28), which is part of the bulk viscosity 
contribution, recombines with the second term in the rhs of Eq. (27), yielding 
finally 

[ k2 c2 + Yz'(0' +~ - i ~  -~2 D~(0, +oJa) ; e a # 0  z,(k)  = +r 1 + 7  o~a 2 
(31) 

where the c a contribution stems from Eq. (19). As observed elsewhere, ~5~ the 
fact~that here ~,,~ and Dz have to be evaluated at the finite frequency co 3 makes 
them complex quantities and prevents us from relating them further to the 
standard thermodynamic and transport coefficients. Finally, for the 2D OCP 
we get an intermediate behavior between the two previous cases. From Eqs. 
(27) and (19) we get now 

o r  

uZ(k) = ~22k/k2 + k2~2; e2 ~ 0 (32) 

l k \112 t 21-~2k ~52 ). 
N(k) = _+ ( ~ )  ~o2(1 + (33) 

which when substituted into Eq. (28) yields 

F(+u(k)) = D,O, + u(k)) + i drt,(O, O)/dz; e2 ~ 0 (34) 

From Eq. (33) we see that the plasma mode has now become a low-frequency 
mode [~(k) = O(kl12)], and hence the dispersive corrections to the plasma 
frequency can again be expressed in terms of thermodynamic quantities (5). 
The plasma frequency, Eq. (33), is, however, still too high for the thermal 
conductivity contribution to Eq. (28) to remain, so that the damping of this 
plasma mode has the same form as the sound absorption coefficient, but 
without the thermal conductivity contribution [compare Eqs. (34) and (30)]. 
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3.3. The Dynamic Structure Factor 

Besides the nature of the collective modes, it is also of interest to know 
the strength with which they contribute to the dynamic structure factor or the 
Van Hove function G..(k, t). Returning to Eq. (9), it is easily established 
with the aid of the results of the preceding sections that for small k we can 
write 

G  (kz) i zt(k)) 1 i ( 
s ( k )  = z - z t ( k )  ~ ( k )  + ~ = z - z ~ ( k )  . 1  - ~ ( - U )  ] 

( 3 5 )  

where the diffusive mode zt(k) and the propagating modes z ~ ( k )  have been 
discussed in Sections 3.1 and 3.2, respectively. The inverse Laplace transform 
of Eq. (35) yields then the Van Hove function G~(k, t) whose Fourier trans- 
form is the dynamic structure factor. We can thus continue our discussion on 
the basis of Eq. (35). Let us first consider the strength, say a t (k ) ,  of the thermal 
mode, which, according to Eq. (35), is given by ar = k~y~,/~ 2. For the neutral 
fluid we obtain from Eqs. (20), (29) 

ar (k  = O) = 1 - c,/cp; ea = 0 (36) 

whereas for the d-D OCP we get from Eqs. (19), (20) 

- 
ea ~ 0 (37) a t ( k )  = \ k a !  vo 2 ' 

For the strength of the propagating modes 2a~(k) = 1 - k2~,.(0, +~)/,~2 
we get, similarly, 

2 a . ( k  = O) = cdc~,; ea = 0 (38) 

for the neutral fluid and 

[k~ a-x y,~(0, + ~(k)). ea ~ 0 (39) 
2 a ~ ( k )  = 1 - ~k~ /  Vo ~ ' 

for the charged fluid. In all cases we find that at  + ~ a~ = 1 for small k, 
i.e,, the collective modes we have found exhaust the small-k portion of the 
zeroth-order sum rule of the dynamic structure factor. There is, however, a 
definite difference between the neutral and charged fluid, in that the propagat- 
ing plasma modes of the d-D OCP exhaust the sum rule by themselves, the 
diffusive thermal mode contributing only an order k a- ~ term. 

4, RELATION TO M E A N - F I E L D  T H E O R Y  

The results obtained in the previous section do not involve any assump- 
tion concerning the strength of the coupling and are restricted only by the 
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long-wavelength limit and the isotropy of the fluid phase. It is thus of interest 
to compare them with the results obtained previously by various authors (8) in 
the mean-field approximation. This approximation can be easily recovered 
from the kinetic equation (3). Indeed, let us recall that the memory function 
Z of Eq. (3) can be split into three terms, (Sa) Z = E ~ + Z ~ + Z c, the free-flow 
term Z ~ the self-consistent field term Z ~, and the collision term Z c. The 
mean-field approximation corresponds, then, to neglecting all collisional 
effects, i.e., E MFA = Z ~ + Z ~. In this approximation no diffusive heat mode 
(cf. Section 3.1) is obtained, as the collisions are essential for establishing this 
transport process. For  the plasma modes of the d-D OCP we obtain from 
Section 2 in a straightforward manner and for small k 

z~.(k) = +(k/ka)(8-a)'%~d[1 + ~(k/ka) d- l]  - iFa(k) (40) 

where Fa(k) is the Landau damping 

Fa(k) = (~/8)ll2wd(ka/k)2a- ~exp[-  ~(ka/k) ~-1 _ ~] 

As Eq. (40) reduces to the result obtained by previous authors (8~ from the 
random-phase approximation to the dielectric constant, we can skip its 
derivation here. The contribution from the electron collisions to the damping, 
say F2c(k), was calculated by Totsuji (8~ from the Boltzmann equation. He 
found 

r2c(k) = (3~rzl2/16)kvo (41) 

which, when added to the Landau damping F2(k) of Eq. (40), is seen to 
dominate the latter for small k. 

For the 3D OCP we have shown elsewhere (Sa) that Eq. (40) with d = 3 
is the weak coupling limit, ~3 ~ 0, of Eq. (31) except that the Landau damping 
I'3(k ) is dominated for small k by a small collisional damping term F3~(k), 
which was obtained there as 

r~o(k) = (1/15~r3J2)(k/k3)2~%)t3 In a f  1 (42) 

where we recall that o~3 = vok3 and A3 = (k3)3/n3. Hence, as expected, the 
mean-field approximation is seen to describe correctly the plasma modes of a 
weakly coupled 3D OCP in the limit A 3 --, 0. In the 2D case, however, this is 
not the case, i.e., Eq. (40) with d -- 2 is not equivalent to the weak coupling 
limit, ),2-~ 0, of Eqs. (33)-(34). Indeed, as A2-+ 0, we obtain from Eq. (33) 

~(k)  = + (k/k:)~'2~2(1 + k/k2);  ;~2 --> 0 (43) 

because as A2 -+ 0, c2/vo 2 -+ 1 and c~,/c, -+ 2. Comparing Eq. (43) with Eq. 
(40) for d = 2, we see that the dispersive correction to the plasma mode as 
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computed by the mean-field approximation is 3/2 times the weak coupling 
limit, 6 Eq. (43), of the exact result given by Eq. (40). Moreover, Eq. (34) can 
be compared neither with F2(k) of Eq. (40) nor with F2c(k) of Eq. (41). The 
reason for this discrepancy in the 2D case is twofold. First there is the fact 
that a rough estimate of  the collision frequency ~oc ~ Z c indicates that 
oJo ,,~ (ha)d-2wd. This enhancement of the collision frequency in two dimen- 
sions was first pointed out by Totsuji. (8~ This then implies that the mean-field 
approximation (~oc ~ 0) is a weak coupling approximation (ha--> 0) for 
d = 3 (~oc ~ 2t8co8) , but not for d = 2 (co~ -,~ o J2). This is in fact already indi- 
cated by the fact that Fa ~ of Eq. (42) vanishes with ~3, whereas P2 c of Eq. (41) 
is independent of A2. The second reason is that in the presence of a low- 
frequency mode such as the 2D plasma mode (but not the 3D plasma mode) 
we can not freely commute the long-wavelength limit (k -+  0) and the col- 
lisionless limit ( Zc~  w~ ~ 0). This is most clearly seen by recalling the 
relation which exists (~ between the transport matrix O~j of Eq. (4) and the 
memory function 2 of Eq. (3). For concreteness we focus on f~,(kz) = 
-ik2D~(kz), which appears in Eq. (34). We have then 

~2H(kz ) = (/[Z~]l> + (/l(Z ~ + ZOQ(z - QZOQ - QZ~Q)-IQ(y,o + z0]/> 

(44) 

where Q projects out the hydrodynamic states, ~ and where, for simplicity, 
we did not indicate the k and z dependence of Z~ and Z~(kz), For weak 
collisional effects (w~ -+ 0) we can neglect the first term in the rhs of Eq. (44) 
and rewrite f~,z(k, ~(k)) as needed for Eq. (34) as 

f~zz(k, ~ ( k ) ) =  <IIZ~  Q Z ~  QZCQ)-~QZ~ (45) 

where ~(k) is given by Eq. (33). From Eq. (45) we see that as Zc-+ 0, for 
given k, there develops a singularity in the propagator [~(k) - QEOQ _ i0]- 1 
of Eq. (45). This singularity is well known to lead to the Landau damping 
term of Eq. (40). If, on the contrary, we let k -+ 0, for given Z ~ however small 
but different from zero, then as both ~(k) and Z ~ vanish with k the propagator 
in Eq. (45) reduces to ( -QZCQ) - ~, i.e., a different result. We can rephrase 
this somewhat differently. As here ~(k) = O(k ~/2) we can neglect QZ~ in 
front of ~(k) in Eq. (45) and expand [~(k) - QZ~Q] -~ for weak Z ~ as 
(~)-~(1 + QZCQ/~). The contribution of the ~ -  ~ term to Eq. (34) can then 
be shown to operate exactly the transition from Eq. (43) to Eq. (40), while the 
QE~Q/~2 term reproduces exactly Eq. (41) if Z ~ is approximated by the 
linearized Boltzmann collision operator. 7 This then indicates how the mean- 

8 This result, Eq. (43), has also been obtained by Onuki, c~8~ who applied the method of 
the hydrodynamical modes C~7) to a model-Boltzmann equation. We thank H. Totsuji 
for calling our attention to this unpublished result. 

7 An equivalent result can also be obtained from the linearized Landau collision operator 
with an appropriate large-wavevector cutoff. 
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field result can be obtained from our general formulation. The validity of this 
collisionless approximation thus rests on an expansion in QECQ/~(k) ,,~ coc/m 
and is valid when 

COc/COz << (k/k2) 112 << 1 (46) 

while our result of Section 3 will be valid when 

(k/k2) ~12 << c%/~2 (47) 

Whereas Eq. (47) can always be satisfied for small enough k values, this is not 
so for Eq. (46). We can rephrase now our objections against the mean-field 
results as follows. The mean-field or collisionless approximation of the 2D 
OCP never describes a weakly coupled system (A2 --~ 0), because coc remains 
finite as A2 ~ 0. When for some as yet unspecified reason the collisional effects 
are weak, the mean-field approximation can only describe that portion of the 
k spectrum satisfying Eq. (46), but not the longest wavelengths satisfying 
Eq. (47). 

5. CONCLUSIONS 

In an attempt to describe the electrons trapped at the surface of liquid 
dielectrics, we have considered the collective modes and the dynamical struc- 
ture factor of a classical, two-dimensional, one-component plasma with 1It 
interactions. We found it illuminating to treat both the charged and un- 
charged particle system as well as the two- and three-dimensional system 
from a unified microscopic viewpoint. As a result of the weak intensity of the 
coupling of the energy and density fluctuations, the thermal conductivity 
mode of the two-dimensional electron fluid has been shown to differ by a 
factor cv/c~ from the corresponding mode of uncharged fluids. For the same 
reason, the thermal conductivity mode contributes only weakly to the 
dynamical structure factor (Rayleigh's central peak) and to the damping of 
the plasma oscillations of the electron surface layer. Because of the restricted 
dimensionality, the plasma modes of the layer are shown to be low-frequency 
modes. As a consequence of this, the damping of the plasma modes can be 
expressed in terms of the same quantity, except for the thermal conductivity 
contribution, as the one giving the absorption of the sound waves of un- 
charged particle systems. Comparing our results, which only require the 
long-wavelength approximation, with previous results, which all rely on the 
mean-field approximation, we found that the mean-field approximation of 
this two-dimensional electron fluid does not describe the long-wavelength 
region correctly, whereas, contrary to a current statement, the mean-field 
approximation is, in the present case, not equivalent to a weak coupling 
approximation. 
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